

One Shot Learning: Meta-learning approaches

Armand Nicolicioiu

University Politehnica of Bucharest

armand.nicolicioiu@gmail.com

1. Introduction

Visual classification tasks can be solved with high accuracy by using large convolutional neural network models. Existing models require a large training dataset, increased computing power and often result in a relatively high inference time. Humans show the ability to acquire information fast and

3. Matching networks [1]

- Learns an embedding function f
- For a new example x':
 - 1. compute distances between x' and all the examples in the training set in the embedding space
 - 2. compute predictions as a linear combination of the labels in the training set weighted by the similarities

4. Prototypical networks [2]

- Learns an embedding function f
- For a new example x':
 - 1. compute the centers in the embedding space as the mean of all examples from each class
 - 2. compute predictions as the similarities with the centers in the embedding space

5. Model-Agnostic Meta-Learning [3]

- Learns an embedding function f
- Add another fully connected layer that makes the prediction
- Inner Loop: obtain θ' that lowers error on D^{tr} .
- Outer Loop:

• Update θ_f in order to minimize error on validation set

6. Learning trial

N-way K-shot classification task

- N possible classes
- *K* examples from each class
- the classes can differ between learning trials

Each task $\mathcal{T}_i \sim p(\mathcal{T})$ contains:

- a training set \mathcal{D}^{tr}
 - contains K examples from each of the N possible classes
 - used to train a N-way prediction

• Update θ_f in order to minimize error on validation set

7. Minilmagenet Results 5-way

Method	Metric	1-shot	5-shot
Matching Nets Matching Nets	Dot Product Euclidean	$\begin{array}{c} 45.10\\ 46.96\end{array}$	$58.80 \\ 60.40$
Prototypical Nets Prototypical Nets	Dot Product Euclidean	$\begin{array}{c} 45.10\\ 46.96\end{array}$	$\begin{array}{c} 60.38\\ 62.10\end{array}$
MAML MAML–difBN [4]	Implicit Dot Implicit Dot	$\begin{array}{c} 44.59\\ 45.81 \end{array}$	
MAML–Matching MAML–Matching	Dot Product Euclidean	$\begin{array}{c} 46.06\\ 45.80\end{array}$	
MAML–Proto MAML–Proto	Dot Product Euclidean	$46.06 \\ 45.80;$	$59.09 \\ 62.06$

9. References

- 1. predict on D^{val} using θ'
- 2. compute $\nabla_{\theta} \mathcal{L}^{val}$
- 3. update θ using this gradient

8. Minilmagenet

model

- a validation set \mathcal{D}^{val}
 - contains other examples from the same N classes
 - used to estimate the generalization performance of the model trained on the N * K examples

The total set of tasks is divided into:

- a training meta-set of tasks, \mathcal{S}^{tr}
- a validation meta-set of tasks, S^{val}
- a **test meta-set** of tasks, S^{test}

[1] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning. NeurIPS2016.

[2] Jake Snell, Kevin Swersky, and Richard Prototypical networks for few-shot Zemel. learning. NeurIPS 2017.

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. ICML2017.

[4] Antreas Antoniou, Harrison Edwards, and Amos Storkey. "How to train your MAML."

