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INTRODUCTION
• Deep learning models generalize well

in unseen scenarios. However, out-of-
distribution data brings difficulties.

• Simple spurious correlations in training
data can act as shortcuts used instead of re-
lying on the causal features.

CONTRIBUTIONS
• Investigated ViTs [1] inductive bias for

modularity and designed a head selection
method that improves OOD performance.

• Proposed a head diversification method
based on orthogonality of head influence,
leading to better head specialization.
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Head selection:

1. Compute QKV self-attention:
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2. Mask a subset of the heads
(change value to 0) and con-
catenate results.

3. Scale output to compensate
masked heads.

Diversity Loss:

1. Compute Input Gradient
(similar to [3]) through each
attention head, defined as the
gradient of the top prediction
p∗ w.r.t the shared input x.

2. Add orthogonality of input
gradients to the training ob-
jective, to promote head spe-
cialization.

Mathematical details:
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EXPERIMENTAL RESULTS

Figure 1: Spurious feature accuracy
for single head (ERM training).

Figure 2: Causal feature accuracy
for single head (ERM training).
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Figure 3: In-Distribution perfor-
mance comparison.

Figure 4: OOD benefits of diversifi-
cation objective.

Figure 5: OOD benefits of best head
selection and diversification.
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Figure 6: Out-of-Distribution per-
formance comparison.

COMPUTER VISION
In CI-MNIST [2] the training label is the parity of
the digit. The background color can be correlated
with the label or it can be random.

Figure 7: Unbiased training (random background)

Figure 8: Biased training (correlated background)
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Figure 9: ViT performance for ERM training.

REINFORCEMENT LEARNING
• Novel RL environment based on CartPole.
• A green dot is overlayed on on the left or

right side, according to the optimal action.
It can act as a "shortcut" during training.

the goal is

to not rely

on the dot

correlation
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Figure 10: DQN with ViT backbone trained in a biased
setting (left) and in an unbiased setting (right).
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Figure 11: DQN + ViT performance for ERM training.
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