

Few shot learning by features adaptation with Graph Neural Networks

Armand Nicolicioiu

Andrei Nicolicioiu

Bitdefender

Train a classifier using only a few examples per class

Train a classifier using only a few examples per class

Train a classifier using only a few examples per class

Train a classifier using only a few examples per class

Train a classifier using only a few examples per class

Existing methods

- Non parametric
 - Matching Networks (Vinyals et al., 2016)
 - Prototypical Networks (Snell et al., 2017)
- Optimization based
 - MAML (Finn et al., 2017)
 - CAVIA (Zintgraf et al., 2018)
- Hybrid:
 - CAML (Jiang et al., 2019) Triantafillou et al. (2020)

- Intuition
 - It's easy to overfit the few samples
 - The context is very important
- Proposed solution
 - Adapt the activations by info explicitly extracted from the support set

$${\widehat f}_{\, heta}({f x})=f_{ heta}({f x})\odot\gamma+eta$$

 $f^l_ heta$

• Extract query features $f_{ heta}(\mathbf{x})$

 $f^l_ heta$

 $\downarrow \mu_{\mathrm{X}}$

• Form query prototype μ_x

 $f^l_ heta$

 μ_2

• Extract support prototypes μ_i

5

 μ_3

 $\downarrow \mu_{\mathrm{X}}$

 μ_1

Process the prototypes with GNN

 $f^l_{ heta}$

 μ_3

 μ_5

 μ_2

• Modulate query features $\hat{f}^{l}_{ heta}(\mathbf{x}) = f^{l}_{ heta}(\mathbf{x}) \odot \gamma + eta$

 γ,eta

 $\downarrow \mu_{\rm X}$

 μ_1

 μ_5

Support-Attention

 Send messages from the prototypes of the support set to the current sample

$$\gamma, \beta = \left[\mu_{\mathbf{x}} | \operatorname{softmax} \left(\frac{(\mu_{\mathbf{x}} W_q) (PW_k)^T}{\sqrt{C}} \right) (PW_v) \right] W$$

Support-Graph-Attention

- 1. support set $ightarrow \mu_{\mathbf{x}}$
- 2. resulting node \rightarrow all elements of the support set
- 3. update resulting nodes by self attention
- 4. generate y and b with the previous mechanism

Our implementations

Model	ConvNet-4-32	ConvNet-4-128
MAML	47.41	48.29
CAVIA	46.01	49.44
Proto-Nets	49.09	51.33
Our Inner Att	48.04	49.81
Out Inner Graph	46.72	49.20
Our Proto Graph	50.23	52.38

Model	Backbone	5-way 1-shot
Matching Nets [Vinyals et al., 2016]	ConvNet-4-32	43.56 ± 0.84
Proto Nets [Snell et al., 2017]	ConvNet-4-32	48.70 ± 1.84
MAML [Finn et al., 2017]	ConvNet-4-32	48.07 ± 1.75
Cavia [Zintgraf et al., 2018]	ConvNet-4-128 4	49.84 ± 0.68
GNN [Satorras and Estrach, 2018]	64-96-128-256	50.33 ± 0.36
LEO [Rusu et al., 2019]	WRN-28-10	61.76 ± 0.08
SNAIL [Mishra et al., 2018]	ResNet-12	55.71 ± 0.99
MetaOptNet [Lee et al., 2019]	ResNet-12	62.64 ± 0.61
Ours	ConvNet-4-32	50.23
Ours	ConvNet-4-128	52.38

Conclusion

- Proposed an architecture that is biased towards modelling relation between classes with a GNN
- Modulating features with respect to the support set using graph models improves performance

Thank you for watching!